Returns a new DataFrame that drops rows containing null or NaN values.
Optionalhow: "any" | "all"'any': drop a row if it contains any null or NaN values. 'all': drop a row only if all its values are null or NaN.
Optionalcols: string[]Optional list of column names to consider. If not specified, all columns are considered.
DataFrame with null/NaN rows dropped
Returns a new DataFrame that drops rows containing null or NaN values in the specified columns.
List of column names to consider.
DataFrame with null/NaN rows dropped
Returns a new DataFrame that drops rows containing less than minNonNulls non-null and non-NaN values.
Minimum number of non-null and non-NaN values required to keep a row.
Optionalcols: string[]Optional list of column names to consider.
DataFrame with rows dropped based on threshold
Returns a new DataFrame that replaces null or NaN values.
Value to replace null/NaN values with. Must be a number, string, or boolean.
Optionalcols: string[]Optional list of column names to consider. If not specified, all compatible columns are considered.
DataFrame with null values replaced
Returns a new DataFrame that replaces null or NaN values using a map of column names to values.
Map of column names to replacement values.
DataFrame with null values replaced
Returns a new DataFrame replacing a value with another value.
Value to be replaced. Must be a number, string, or boolean.
Value to replace with. Must be a number, string, or boolean.
Optionalcols: string[]Optional list of column names to consider. If not specified, all compatible columns are considered.
DataFrame with values replaced
Returns a new DataFrame replacing values using a map.
Map of old values to new replacement values.
Optionalcols: string[]Optional list of column names to consider. If not specified, all compatible columns are considered.
DataFrame with values replaced
Functionality for working with missing data in DataFrames.