Class RelationalGroupedDataset
DataFrame, created by groupBy,
cube or rollup (and also pivot).
The main method is the agg function, which has multiple variants. This class also contains
some first-order statistics such as mean, sum for convenience.
- Since:
- 2.0.0
- Note:
- This class was named
GroupedDatain Spark 1.x.
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic classTo indicate it's the CUBEstatic classTo indicate it's the GroupBystatic classstatic interfaceThe Grouping Typestatic classstatic classTo indicate it's the ROLLUP -
Method Summary
Modifier and TypeMethodDescription(Java-specific) Compute aggregates by specifying a map from column name to aggregate methods.Compute aggregates by specifying a series of aggregate columns.Compute aggregates by specifying a series of aggregate columns.(Scala-specific) Compute aggregates by specifying a map from column name to aggregate methods.agg(scala.Tuple2<String, String> aggExpr, scala.collection.immutable.Seq<scala.Tuple2<String, String>> aggExprs) (Scala-specific) Compute aggregates by specifying the column names and aggregate methods.static RelationalGroupedDatasetapply(Dataset<Row> df, scala.collection.immutable.Seq<org.apache.spark.sql.catalyst.expressions.Expression> groupingExprs, RelationalGroupedDataset.GroupType groupType) <K,T> KeyValueGroupedDataset<K, T> Returns aKeyValueGroupedDatasetwhere the data is grouped by the grouping expressions of currentRelationalGroupedDataset.Compute the mean value for each numeric columns for each group.Compute the mean value for each numeric columns for each group.count()Count the number of rows for each group.Compute the max value for each numeric columns for each group.Compute the max value for each numeric columns for each group.Compute the average value for each numeric columns for each group.Compute the average value for each numeric columns for each group.Compute the min value for each numeric column for each group.Compute the min value for each numeric column for each group.Pivots a column of the currentDataFrameand performs the specified aggregation.(Java-specific) Pivots a column of the currentDataFrameand performs the specified aggregation.Pivots a column of the currentDataFrameand performs the specified aggregation.Pivots a column of the currentDataFrameand performs the specified aggregation.(Java-specific) Pivots a column of the currentDataFrameand performs the specified aggregation.Pivots a column of the currentDataFrameand performs the specified aggregation.Compute the sum for each numeric columns for each group.Compute the sum for each numeric columns for each group.toString()
-
Method Details
-
apply
public static RelationalGroupedDataset apply(Dataset<Row> df, scala.collection.immutable.Seq<org.apache.spark.sql.catalyst.expressions.Expression> groupingExprs, RelationalGroupedDataset.GroupType groupType) -
agg
Description copied from class:RelationalGroupedDatasetCompute aggregates by specifying a series of aggregate columns. Note that this function by default retains the grouping columns in its output. To not retain grouping columns, setspark.sql.retainGroupColumnsto false.The available aggregate methods are defined in
functions.// Selects the age of the oldest employee and the aggregate expense for each department // Scala: import org.apache.spark.sql.functions._ df.groupBy("department").agg(max("age"), sum("expense")) // Java: import static org.apache.spark.sql.functions.*; df.groupBy("department").agg(max("age"), sum("expense"));Note that before Spark 1.4, the default behavior is to NOT retain grouping columns. To change to that behavior, set config variable
spark.sql.retainGroupColumnstofalse.// Scala, 1.3.x: df.groupBy("department").agg($"department", max("age"), sum("expense")) // Java, 1.3.x: df.groupBy("department").agg(col("department"), max("age"), sum("expense"));- Overrides:
aggin classRelationalGroupedDataset- Parameters:
expr- (undocumented)exprs- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
mean
Description copied from class:RelationalGroupedDatasetCompute the average value for each numeric columns for each group. This is an alias foravg. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the average values for them.- Overrides:
meanin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
max
Description copied from class:RelationalGroupedDatasetCompute the max value for each numeric columns for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the max values for them.- Overrides:
maxin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
avg
Description copied from class:RelationalGroupedDatasetCompute the mean value for each numeric columns for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the mean values for them.- Overrides:
avgin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
min
Description copied from class:RelationalGroupedDatasetCompute the min value for each numeric column for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the min values for them.- Overrides:
minin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
sum
Description copied from class:RelationalGroupedDatasetCompute the sum for each numeric columns for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the sum for them.- Overrides:
sumin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
as
Description copied from class:RelationalGroupedDatasetReturns aKeyValueGroupedDatasetwhere the data is grouped by the grouping expressions of currentRelationalGroupedDataset.- Specified by:
asin classRelationalGroupedDataset- Parameters:
evidence$1- (undocumented)evidence$2- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
agg
public Dataset<Row> agg(scala.Tuple2<String, String> aggExpr, scala.collection.immutable.Seq<scala.Tuple2<String, String>> aggExprs) Description copied from class:RelationalGroupedDataset(Scala-specific) Compute aggregates by specifying the column names and aggregate methods. The resultingDataFramewill also contain the grouping columns.The available aggregate methods are
avg,max,min,sum,count.// Selects the age of the oldest employee and the aggregate expense for each department df.groupBy("department").agg( "age" -> "max", "expense" -> "sum" )- Overrides:
aggin classRelationalGroupedDataset- Parameters:
aggExpr- (undocumented)aggExprs- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
agg
Description copied from class:RelationalGroupedDataset(Scala-specific) Compute aggregates by specifying a map from column name to aggregate methods. The resultingDataFramewill also contain the grouping columns.The available aggregate methods are
avg,max,min,sum,count.// Selects the age of the oldest employee and the aggregate expense for each department df.groupBy("department").agg(Map( "age" -> "max", "expense" -> "sum" ))- Overrides:
aggin classRelationalGroupedDataset- Parameters:
exprs- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
agg
Description copied from class:RelationalGroupedDataset(Java-specific) Compute aggregates by specifying a map from column name to aggregate methods. The resultingDataFramewill also contain the grouping columns.The available aggregate methods are
avg,max,min,sum,count.// Selects the age of the oldest employee and the aggregate expense for each department import com.google.common.collect.ImmutableMap; df.groupBy("department").agg(ImmutableMap.of("age", "max", "expense", "sum"));- Overrides:
aggin classRelationalGroupedDataset- Parameters:
exprs- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
agg
Description copied from class:RelationalGroupedDatasetCompute aggregates by specifying a series of aggregate columns. Note that this function by default retains the grouping columns in its output. To not retain grouping columns, setspark.sql.retainGroupColumnsto false.The available aggregate methods are defined in
functions.// Selects the age of the oldest employee and the aggregate expense for each department // Scala: import org.apache.spark.sql.functions._ df.groupBy("department").agg(max("age"), sum("expense")) // Java: import static org.apache.spark.sql.functions.*; df.groupBy("department").agg(max("age"), sum("expense"));Note that before Spark 1.4, the default behavior is to NOT retain grouping columns. To change to that behavior, set config variable
spark.sql.retainGroupColumnstofalse.// Scala, 1.3.x: df.groupBy("department").agg($"department", max("age"), sum("expense")) // Java, 1.3.x: df.groupBy("department").agg(col("department"), max("age"), sum("expense"));- Overrides:
aggin classRelationalGroupedDataset- Parameters:
expr- (undocumented)exprs- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
count
Description copied from class:RelationalGroupedDatasetCount the number of rows for each group. The resultingDataFramewill also contain the grouping columns.- Overrides:
countin classRelationalGroupedDataset- Returns:
- (undocumented)
- Inheritdoc:
-
mean
Description copied from class:RelationalGroupedDatasetCompute the average value for each numeric columns for each group. This is an alias foravg. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the average values for them.- Overrides:
meanin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
max
Description copied from class:RelationalGroupedDatasetCompute the max value for each numeric columns for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the max values for them.- Overrides:
maxin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
avg
Description copied from class:RelationalGroupedDatasetCompute the mean value for each numeric columns for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the mean values for them.- Overrides:
avgin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
min
Description copied from class:RelationalGroupedDatasetCompute the min value for each numeric column for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the min values for them.- Overrides:
minin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
sum
Description copied from class:RelationalGroupedDatasetCompute the sum for each numeric columns for each group. The resultingDataFramewill also contain the grouping columns. When specified columns are given, only compute the sum for them.- Overrides:
sumin classRelationalGroupedDataset- Parameters:
colNames- (undocumented)- Returns:
- (undocumented)
- Inheritdoc:
-
pivot
Description copied from class:RelationalGroupedDatasetPivots a column of the currentDataFrameand performs the specified aggregation.Spark will eagerly compute the distinct values in
pivotColumnso it can determine the resulting schema of the transformation. To avoid any eager computations, provide an explicit list of values viapivot(pivotColumn: String, values: Seq[Any]).// Compute the sum of earnings for each year by course with each course as a separate column df.groupBy("year").pivot("course").sum("earnings")- Overrides:
pivotin classRelationalGroupedDataset- Parameters:
pivotColumn- Name of the column to pivot.- Returns:
- (undocumented)
- See Also:
-
org.apache.spark.sql.Dataset.unpivotfor the reverse operation, except for the aggregation.
- Inheritdoc:
-
pivot
public RelationalGroupedDataset pivot(String pivotColumn, scala.collection.immutable.Seq<Object> values) Description copied from class:RelationalGroupedDatasetPivots a column of the currentDataFrameand performs the specified aggregation. There are two versions of pivot function: one that requires the caller to specify the list of distinct values to pivot on, and one that does not. The latter is more concise but less efficient, because Spark needs to first compute the list of distinct values internally.// Compute the sum of earnings for each year by course with each course as a separate column df.groupBy("year").pivot("course", Seq("dotNET", "Java")).sum("earnings") // Or without specifying column values (less efficient) df.groupBy("year").pivot("course").sum("earnings")From Spark 3.0.0, values can be literal columns, for instance, struct. For pivoting by multiple columns, use the
structfunction to combine the columns and values:df.groupBy("year") .pivot("trainingCourse", Seq(struct(lit("java"), lit("Experts")))) .agg(sum($"earnings"))- Overrides:
pivotin classRelationalGroupedDataset- Parameters:
pivotColumn- Name of the column to pivot.values- List of values that will be translated to columns in the output DataFrame.- Returns:
- (undocumented)
- See Also:
-
org.apache.spark.sql.Dataset.unpivotfor the reverse operation, except for the aggregation.
- Inheritdoc:
-
pivot
Description copied from class:RelationalGroupedDataset(Java-specific) Pivots a column of the currentDataFrameand performs the specified aggregation.There are two versions of pivot function: one that requires the caller to specify the list of distinct values to pivot on, and one that does not. The latter is more concise but less efficient, because Spark needs to first compute the list of distinct values internally.
// Compute the sum of earnings for each year by course with each course as a separate column df.groupBy("year").pivot("course", Arrays.<Object>asList("dotNET", "Java")).sum("earnings"); // Or without specifying column values (less efficient) df.groupBy("year").pivot("course").sum("earnings");- Overrides:
pivotin classRelationalGroupedDataset- Parameters:
pivotColumn- Name of the column to pivot.values- List of values that will be translated to columns in the output DataFrame.- Returns:
- (undocumented)
- See Also:
-
org.apache.spark.sql.Dataset.unpivotfor the reverse operation, except for the aggregation.
- Inheritdoc:
-
pivot
Description copied from class:RelationalGroupedDataset(Java-specific) Pivots a column of the currentDataFrameand performs the specified aggregation. This is an overloaded version of thepivotmethod withpivotColumnof theStringtype.- Overrides:
pivotin classRelationalGroupedDataset- Parameters:
pivotColumn- the column to pivot.values- List of values that will be translated to columns in the output DataFrame.- Returns:
- (undocumented)
- See Also:
-
org.apache.spark.sql.Dataset.unpivotfor the reverse operation, except for the aggregation.
- Inheritdoc:
-
pivot
Description copied from class:RelationalGroupedDatasetPivots a column of the currentDataFrameand performs the specified aggregation.Spark will eagerly compute the distinct values in
pivotColumnso it can determine the resulting schema of the transformation. To avoid any eager computations, provide an explicit list of values viapivot(pivotColumn: Column, values: Seq[Any]).// Compute the sum of earnings for each year by course with each course as a separate column df.groupBy($"year").pivot($"course").sum($"earnings");- Specified by:
pivotin classRelationalGroupedDataset- Parameters:
pivotColumn- he column to pivot.- Returns:
- (undocumented)
- See Also:
-
org.apache.spark.sql.Dataset.unpivotfor the reverse operation, except for the aggregation.
- Inheritdoc:
-
pivot
public RelationalGroupedDataset pivot(Column pivotColumn, scala.collection.immutable.Seq<Object> values) Description copied from class:RelationalGroupedDatasetPivots a column of the currentDataFrameand performs the specified aggregation. This is an overloaded version of thepivotmethod withpivotColumnof theStringtype.// Compute the sum of earnings for each year by course with each course as a separate column df.groupBy($"year").pivot($"course", Seq("dotNET", "Java")).sum($"earnings")- Specified by:
pivotin classRelationalGroupedDataset- Parameters:
pivotColumn- the column to pivot.values- List of values that will be translated to columns in the output DataFrame.- Returns:
- (undocumented)
- See Also:
-
org.apache.spark.sql.Dataset.unpivotfor the reverse operation, except for the aggregation.
- Inheritdoc:
-
toString
-